Eisenstein Cohomology and Ratios of Critical Values of Rankin–selberg L-functions

نویسنده

  • GÜNTER HARDER
چکیده

This is an announcement of results on rank-one Eisenstein cohomology of GLN , with N ≥ 3 an odd integer, and algebraicity theorems for ratios of successive critical values of certain Rankin–Selberg L-functions for GLn ×GLn′ when n is even and n′ is odd. Résumé: Cette note est une annonce de résultats sur la cohomologie d’Eisenstein de rang un de GLN , avec N ≥ 3 un entier impair, et de théorèmes d’algébricité pour les rapports de valeurs critiques successives de certaines fonctions L de Rankin–Selberg pour GLn ×GLn′ lorsque n est pair et n′ est impair. 1. The general situation Let G/Q be a connected split reductive algebraic group over Q whose derived group G/Q is simply connected. Let Z/Q be the center of G and let S be the maximal Q-split torus in Z. Let C∞ be a maximal compact subgroup of G(R) and let K∞ = C∞S(R). The connected component of the identity of K∞ is denoted K◦ ∞ and K∞/K ◦ ∞ = π0(K∞) ∼ −→ π0(G(R)). Let Kf = ∏ pKp ⊂ G(Af ) be an open compact subgroup; here A is the adèle ring of Q and Af is the ring of finite adèles. The locally symmetric space of G with level structure Kf is defined as S Kf := G(Q)\G(A)/K ◦ ∞Kf . (For the following see Harder [6, Chapter 3, Sections 2, 2.1, 2.2] for details.) For a dominant integral weight λ, let Eλ be an absolutely irreducible finite-dimensional representation of G/Q with highest weight λ, and let Eλ denote the associated sheaf on S Kf . We have an action of the Hecke-algebra H = H G Kf = ⊗pHp on the cohomology groups H•(SG Kf , Eλ). We always fix a level, but sometimes drop it in the notation. For any finite extension F/Q, let Eλ,F = Eλ ⊗Q F , then Eλ,F is the corresponding sheaf on S Kf . Let S̄ Kf be the Borel–Serre compactification of S G Kf , i.e., S̄ Kf = S G Kf ∪ ∂S̄ Kf , where the boundary is stratified as ∂S̄ Kf = ∪P∂PS G Kf with P running through the conjugacy classes of proper parabolic subgroups defined over Q. The sheaf Eλ,F on S Kf naturally extends, using the definition of the Borel-Serre compactification, to a sheaf on S̄ Kf which we also denote by Eλ,F . Restriction from S̄ G Kf to S Kf in cohomology induces an isomorphism H(S̄, Eλ) ∼ −→ H(S, Eλ). Our basic object of interest is the following long exact sequence of π0(K∞)×H-modules · · · −→ H c(S, Eλ) ι∗ −→ H(S̄, Eλ) r∗ −→ H(∂S̄, Eλ) −→ H c (S, Eλ) −→ · · · The image of cohomology with compact supports inside the full cohomology is called inner or interior cohomology and is denoted H! := Image(ι ∗) = Im(H• c → H•). The theory of Eisenstein cohomology is designed to describe the image of the restriction map r∗. Our goal is to study the arithmetic information contained in the above exact sequence. Date: June 10, 2011. 1991 Mathematics Subject Classification. Primary: 11F67; Secondary: 11F66, 11F75, 22E55. Work of A.R. is partially supported by NSF grant DMS-0856113 and an Alexander von Humboldt Research Fellowship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Standard Zero Free Region for Rankin Selberg L-functions

A standard zero free region is obtained for Rankin Selberg L-functions L(s, f×f) where f is a tempered Maass form on GL(n) and f is not necessarily self dual. The method is based on the theory of Eisenstein series generalizing a work of Sarnak. §

متن کامل

Non-Abelian L-Functions For Number Fields

In this paper we introduce non-abelian zeta functions and more generally non-abelian L-functions for number fields, based on geo-arithmetical cohomology, geo-arithmetical truncation and Langlands’ theory of Eisenstein series. More precisely, in Chapter I, we start with a new yet natural geo-arithmetical cohomology and a geo-arithmetical stability in order to define genuine non-abelian zeta func...

متن کامل

A New Tower of Rankin-Selberg Integrals

The notion of a tower of Rankin-Selberg integrals was introduced in [G-R]. To recall this notion, let G be a reductive group defined over a global field F . Let G denote the L group of G. Let ρ denote a finite dimensional irreducible representation of G. Given an irreducible generic cuspidal representation of G(A), we let L(π, ρ, s) denote the partial L function associated with π and ρ. Here s ...

متن کامل

Basic Rankin-selberg

We present the simplest possible example of the Rankin-Selberg method, namely for a pair of holomorphic modular forms for SL(2,Z), treated independently in 1939 by Rankin and 1940 by Selberg. (Rankin has remarked that the general idea came from his advisor and mentor, Ingham.) We also recall a proof of the analytic continuation of the relevant Eisenstein series. That is, we consider the simples...

متن کامل

Ratios of Periods for Tensor Product Motives

In this paper, we prove some period relations for the ratio of Deligne’s periods for certain tensor product motives. These period relations give a motivic interpretation for certain algebraicity results for ratios of successive critical values for Rankin–Selberg L-functions for GLn × GLn′ proved by Günter Harder and the second author.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011